Matematik Öğretmenlerinin Temsil Kullanımlarının Örüntü Genelleme Problemleri Bağlamında Video Temelli Olaylarla İncelenmesi


Özet Görüntüleme: 43 / PDF İndirme: 14

Yazarlar

DOI:

https://doi.org/10.5281/zenodo.11582188

Anahtar Kelimeler:

Çoklu Temsiller, Temsiller, Örüntü Genelleme Problemleri, Video Temelli Örnek Olay

Özet

Matematik yapma yollarından biri olan genelleme, öğrencilerin aritmetik düşünmeden cebire geçiş yapmalarına yardımcı olarak cebirsel düşünmenin gelişimini desteklemesiyle matematik eğitiminde önemli bir yer tutmaktadır. Genelleme yapma becerisinin geliştirilmesinde farklı temsillerin kullanımı birçok araştırmacı tarafından vurgulanmaktadır. Matematiksel genellemenin temel yapısını örüntüler ve örüntü genelleme problemleri oluşturmaktadır. Bu araştırmada matematik öğretmenlerinin örüntü genelleme problemleri bağlamında genelleme sürecinde temsili nasıl ve hangi amaçlarla kullandıklarının video temelli örnek olaylar aracılığı ile incelenmesi amaçlanmaktadır. Araştırmanın katılımcıları gönüllü olarak katılım gösteren dört matematik öğretmeninden oluşmaktadır. Veri toplama sürecinde katılımcılara örüntü genelleme problemleri kapsamında gerçekleştirilen beş ders parçasının videoları izletilmiştir. Veriler video temelli olaylar üzerinden gerçekleştirilen görüşme sürecinde ortaya çıkan yazılı ve sözlü kaynaklardan elde edilmiştir. Verilerin analizinde nitel analiz yöntemi kullanılmıştır. Araştırmanın bulguları, genelleme süreçlerinde kullanılan temsillerin kullanım amaçlarında farklılıklar görüldüğünü ortaya koymaktadır. Matematik öğretmenlerinin genelleme sürecinde temsiller arasında dönüşümler yaptıkları da görülmüştür.

Referanslar

Adu-Gyamfi, K.(2007). Connections among repsentations: The of students' coordinations on a linear function task. Unpublished PhD Dissertaion, North Carolina State University.

Ainsworth, S. (2006). DeFT: A conceptual frame-work for considering learning with multiple representations. Learning and Instruction, 16, 183-198.

Akkan, Y. (2016). Cebirsel Düşünme. Bingölbali, E. Arslan, S. & Zembat, İ. (Ed.), Matematik eğitiminde teoriler (s. 43-64). Ankara: Pegem.

Akkan, Y. Çakıroğlu, Ü. (2012). Doğrusal ve İkinci dereceden örüntüleri genelleştirme stratejileri: 6-8. sınıf öğrencilerinin karşılaştırılması. Eğitim ve Bilim, 37 (165), 104-120.

Akkan, Y, Öztürk, M, Akkan, P. (2017). Pre-Service Elementary Mathematics Teachers’ Generalization Processes of Patterns: Strategies and Justifications. Turkish Journal of Computer and Mathematics Education (TURCOMAT) , 8 (3) , 513-550. DOI: 10.16949/turkbilmat.323384

Ainsworth, S. (2006). Deft: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198.

Ball, D. L. (1988). Knowledge and reasoning in mathematical pedagogy: Examining what prospective teachers bring to teacher education. Unpublished doctoral dissertation, Michigan State University, East Lansing.

Ball, D. B, Thames M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59, 389-407.

Becker, J. R. & Rivera, F. (2005). Generalization strategies of beginning high school algebra students. In H. L. Chick ve J. L. Vincent (Eds.),

Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, (Vol. 4, pp. 121–128). Melbourne, Australia: University of Melbourne.

Blanton, M. & Kaput, J. (2002). Developing elementary teachers’ algebra “eyes and ears”: Understanding characteristics of professional development that promote generative and self-sustaining change in teacher practice. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.

Bowling, A. (2002). Research methods in health: ınvestigating health and health services. Philadelphia, PA: McGraw-Hill House.

Brenner, M. E. Mayer, R. E., Moseley, B., Brar, T., Dura´n, R., … Reed, B. S. (1997). Learning by understanding: The role of multiple representations in learning algebra. American Educational Research Journal, 34(4), 663–689.

Carraher, D.W. Martinez, M.V. & Schliemann, A.D. (2008). Early algebra and mathematical generalization. ZDM Mathematics Education. 40: 3-22.

Chua, B. L. (2009). Features of generalising tasks: help or hurdle to expressing generality. Australian Mathematics Teacher, 65 (2), 18-24.

Delice, A., & Sevimli, E. (2016). Matematik eğitiminde çoklu temsiller. Bingölbali, E., Arslan, S., & Zembat, İ. (Ed.), Matematik eğitiminde teoriler (s. 519-539). Ankara: Pegem.

Dufour-Janvier, B., Bednarz, N., & Belanger, M. (1987). Pedagogical considerations concern-ing the problem of representation. In Claude Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics (pp.109- 1221. Hillsdale, NJ: Erlbaum.

English, L., & Warren, E. (1998). Introducing the variable through pattern exploration. Mathematics Teacher, 91(2), 166–170.

Ferrari, G. (2017). Agency and assemblage in pattern generalisation: A materialist approach to learning. Educ Stud Math, 94(1), 21-36.

Gilbert, J. K. (2010). The role of visual representations in the learning and teaching of science: An introduction. Asia Pacific Forum on Science Learning and Teaching, 11(1), 1-19.

Girit Yıldız D., & Gündoğdu Alaylı, F. (2019). Ortaokul matematik öğretmen adaylarının sabit değişen şekil örüntüsü genellemesini öğretmek için matematik bilgileri. Trakya Eğitim Dergisi, 9(3), 396-414.

Goldin, G.A.,& Kaput, J.J.(1996). A joint perspective on the idea of representation in learning and doing mathematics. In L.P. Steffe, P. NEsher, P.

Cobb, G.A. Goldin ve B. Greer (Eds.), Theories of mathematical learning (pp. 397- 430). Mahwah, NJ:Lawrence Erlbaum Associates.

Gökce, R., & Yeşildere İmre, S . (2017). The role of tasks that supports making algebraic generalisation ın forming 7th grade students’ ability to generalise. Gaziantep University Journal of Social Sciences, 194-215. DOI: 10.21547/jss.281675

Goldin, G. A., & Kaput, J. (1996). A joint perspective on the idea of representation in learning and doing mathematics. Theories of mathematical learning, 397-430.

Grossman, P.L. (1990). The making of a teacher: Teacher knowledge and teacher education. Journal of Teacher Education, 42(5), 379-382.

Hahkioniemi, M. (2006). The role of representations in learning the derivative. Unpublished PhD Thesis, The University of Jyvaskyla.

Herbert, K. & Brown, R. (1997). Patterns as tools for algebraic reasoning. Teaching children mathematics, 3, 340-344.

İpek, A, & Okumuş, S. (2012). The representations of pre-service elementary mathematics teachers used in solving mathematical problems. Gaziantep university journal of social sciences, 11 (3) , 681-700.

Kaf, Y. (2007). Matematikte model kullanmanın 6. sınıf öğrencilerinin cebir erişimlerine etkisi. Yayımlanmamış Yüksek Lisans Tezi, Hacettepe Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.

Kapur, J. N. (1976). Proposal for a course on the nature of mathematical thinking. International Journal of Mathematical Educational in Science and Technology, 7(3), 287-296.

Kaput, J.J. (1999). Teaching and learning a new algebra. In E. Fennema & T. A. Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 133-135). Mahwah, NJ: Lawrence Erlbaum Associates.

Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? (eds: J. J. Kaput, D. W.Carraher and M. L. Blanton), Algebra in the early grades, New York: Lawrence Erlbaum Associates, 5-17.

Kazemi, E, & Franke, Megan. (2003). Using student work to support professional development in elementary mathematics. A CTP Working Paper. Center for the Study of Teaching and Policy, University of Washington.

Keller, B. A., & Hirsch, C. R. (1998). Student preferences for representations of functions. International Journal in Mathematics Education Science Technology, 29(1), 1-17.

Kendal, M. (2002). Teaching and learning introductory differential calculus. Unpublished PhD Dissertation, The University of Melbourne, Australia.

Kieran, C. (2004). The core of algebra: Reflections on its main activities. In K. Stacey, H. Chick, & M. Kendal (Eds.), The future of the teaching and learning of algebra: The 12th ICMI study (pp. 21-34). Dordrecht, The Nether-lands: Kluwer.

Kitzinger, J. (1994). “The methodology of focus groups: The importance of interaction between research participants”, Sociology of health and ıllness, 16 (1), 103–121.

Kılınç, Ç. (2019). Örüntü arama stratejisi ile çözülebilecek problemleri kurmada ortaokul öğrencilerinin performanslarının incelenmesi. Kastamonu Eğitim Dergisi, 27 (2) , 647-656. DOI: 10.24106/kefdergi.2622

Kılıç, S. (2019). Matematik öğretmen adaylarının, 6. sınıf öğrencilerinin cebirsel örüntüleri genellemelerine ilişkin farkındalıkları. Kastamonu Eğitim Dergisi, 27 (4) , 1713-1728. DOI: 10.24106/kefdergi.3263

Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. Chicago: The University of Chicago Press.

Lannin, J. (2002). Developing middle school students’ understanding of recursive and explicit reasoning. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, Louisiana.

Lannin, J. K. (2005). Generalization and justification: The challenge of introducing algebraic reasoning through patterning activities. Mathematical Thinking and Learning, 7(3), 231–258.

Lannin, J. Barker, D., & Townsend, B. (2006). Algebraic generalization strategies: Factors influencing student strategy selection. Mathematics Education Research Journal, 18(3), 3–28.

Martinez, M. V., Castro Superfine, A., Carlton, T. & Dasgupta, C. (2015). Examining the Impact of a Videocase-Based Mathematics Methods Course on Secondary Pre-service Teachers’ Skills at Analysing Students’ Strategies. REDIMAT, Vol4(1), 52-79.

Merriam, S.B. (2013). Nitel araştırma desen ve uygulama için bir rehber. (S.Turan, Çev.) Ankara: Nobel.

Mertens, D. (1998). Research methods in education and psychology. London: Sage Publications

Milli Eğitim Bakanlığı [MEB] (2013). Ortaöğretim Matematik Dersi Öğretim Programı: 9- 12. Sınıflar. Ankara

Nakahara, T.(2008). Cultivating mathematical thinking through representation-utilizing the representational system. APEC-TSUKUBA International Congress, Japan.

National Council of Teachers of Mathematics (NCTM) (2000). Principles and standards for school mathematics. Reston, VA: NCTM.

Orton, A. & Orton, J. (1999). Pattern and the Approach to Algebra. (ed: A. Orton), Pattern in the Teaching and Learning of Mathematics, Cassell, London, 104-120.

Özdemir, E, Dikici, R, Kültür, M. (2015). Öğrencilerin örüntüleri genelleme süreçleri: 7. sınıf örneği. Kastamonu Eğitim Dergisi, 23 (2) , 523-548.

Radford, L. (2008). Iconicity and contraction: A Semiotic investigation of forms of algebraic generalizations of patters in different contexts. ZDM Mathematics Education, 40, 83-96.

Rivera, F. (2007). Visualizing as a mathematical way of knowing: understanding figural generalization. Mathematics Teacher, 101(1), 69-75.

Rivera, F. D. (2011). Toward a visually-oriented school mathematics curriculum. New York: Springer.

Rivera, F. & Becker, J.R. (2003). The effects of figural and numerical cues on the induction processes of preservice elementary teachers. In N. Pateman, B. Dougherty, & J. Zilliox (Eds.),

Proceedings of the Meeting PME and PMENA (Vol. 4, 63-70). Honolulu, HA: University of Hawaii.

Santagata, R, & Angelici, G. (2010). Studying the impact of the lesson analysis framework on pre-service teachers' abilities to reflect on videos of classroom teaching. Journal of Teacher Education, 61, 339-350. doi: 0.1177/0022487110369555

Sasman, M. C., Linchevski, L. and Olivier, A. (1999). The influence of different representations on children’s generalisation thinking processes.

Proceedings of the Seventh Annual Conference of the Southern African Association for research in Mathematics and Science Education, Harare, Zimbabwe, 406-415.

Sherin, M, & van Es, E. (2009). Effects of video club participation on teachers' professional vision. Journal of Teacher Education, 60(1), 20-37. doi: 10.1177/0022487108328155

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.

Stylianide, G. (2010). Engaging secondary students in reasoning and proving. Mathematics teaching, 219.

Takır, A, Özerem, A. (2020). Ortaokul öğrencilerinin örüntü problemlerini çözme başarılarının çeşitli değişkenler açısından incelenmesi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 49, 582-599. DOI: 10.9779/pauefd.523388

Tanışlı, D., & Köse, N. Y. (2011). Generalization strategies about linear figural patterns: effect of figural and numerical clues. Education and Science, 36 (160), 184-198.

Tanışlı, D, Yavuzsoy Köse, N, Camci, F. (2017). Matematik Öğretmen Adaylarının Örüntüler Bağlamında Genelleme ve Doğrulama Bilgileri. Eğitimde Nitel Araştırmalar Dergisi, 5 (3) , 195-222.

Tolga, A, Cantürk Günhan, B. (2020). 6. sınıf öğrencilerinin alan hesaplamada ilişkilendirme ve genelleme süreçlerinin incelenmesi. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 17 (1) , 1042-1066. DOI: 10.33711/yyuefd.800922

Türkoğlu, H. & Yalın, H.İ. (2020). Sınıf öğretmeni adaylarının lineer ve lineer olmayan örüntüleri genelleme stratejileri. Başkent Unıversity Journal of Education. 7 ( 1), 110-128.

Van de Walle, J. A. Karp, K., & Bay-Williams, J. M. (2011). İlkokul ve ortaokul matematiği: Gelişimsel yaklaşımla öğretim (7.baski). (Çev. Edit. S. Durmuş). Ankara: Nobel Akademik Yayincilik.

Venenciano, L. & Heck, R. (2016). Proposing and testing a model to explain traits of algebra preparedness. Educational Studies Mathematics, 92, 21–35.

Yakut Çayi̇r, M. & Akyüz, G. (2015). 9. sınıf öğrencilerinin örüntü genelleme problemlerini çözme stratejilerinin belirlenmesi. Necatibey eğitim fakültesi elektronik fen ve matematik eğitimi dergisi, 9 (2) , 205-229.

Yeşildere İmre, S. Akkoç, H. (2012). Investigating the development of prospective mathematics teachers’ pedagogical content knowledge of generalising number patterns through school practicum. Journal of Mathematics Teacher Education, 15, 207–226, DOİ: 10.1007/s10857-012-9203-6

Yeşi̇ldere İmre, S, Akkoç, H. & Baştürk Şahi̇n, B. (2017). Middle school students' mathematical generalization abilities with the use of different representations. Turkish Journal of Computer and Mathematics Education (TURCOMAT) , 8 (1) , 103-129. DOI: 10.16949/turkbilmat.303220

Yılmaz, R. & Argün, Z. (2013). Matematiksel genelleme sürecinde görselleştirme ve önemi. Hacettepe üniversitesi eğitim fakültesi dergisi, 28 (28-2) , 564-576.

Zazkis, R. & Liljedahl, P. (2002). Generalization of patterns: the tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics 49, 379–402. DOİ:10.1023/A:1020291317178

İndir

Yayınlanmış

2024-06-13

Nasıl Atıf Yapılır

ŞENGÜL, S., & MANCOĞLU KAPLAN, E. (2024). Matematik Öğretmenlerinin Temsil Kullanımlarının Örüntü Genelleme Problemleri Bağlamında Video Temelli Olaylarla İncelenmesi. PEARSON JOURNAL, 8(28), 1246–1268. https://doi.org/10.5281/zenodo.11582188